A mechanism for overcoming P-glycoprotein-mediated drug resistance: novel combination therapy that releases stored doxorubicin from lysosomes via lysosomal permeabilization using Dp44mT or DpC

نویسندگان

  • Nicole A Seebacher
  • Des R Richardson
  • Patric J Jansson
چکیده

The intracellular distribution of a drug can cause significant variability in both activity and selectivity. Herein, we investigate the mechanism by which the anti-cancer agents, di-2-pyridylketone 4,4-dimethyl-3-thiosemicarbazone (Dp44mT) and the clinically trialed, di-2-pyridylketone 4-cyclohexyl-4-methyl-3-thiosemicarbazone (DpC), re-instate the efficacy of doxorubicin (DOX), in drug-resistant P-glycoprotein (Pgp)-expressing cells. Both Dp44mT and DpC potently target and kill Pgp-expressing tumors, while DOX effectively kills non-Pgp-expressing cancers. Thus, the combination of these agents should be considered as an effective rationalized therapy for potently treating advanced and resistant tumors that are often heterogeneous in terms of Pgp-expression. These studies demonstrate that both Dp44mT and DpC are transported into lysosomes via Pgp transport activity, where they induce lysosomal-membrane permeabilization to release DOX trapped within lysosomes. This novel strategy of loading lysosomes with DOX, followed by permeabilization with Dp44mT or DpC, results in the relocalization of stored DOX from its lysosomal 'safe house' to its nuclear targets, markedly enhancing cellular toxicity against resistant tumor cells. Notably, the combination of Dp44mT or DpC with DOX showed a very high level of synergism in multiple Pgp-expressing cell types, for example, cervical, breast and colorectal cancer cells. These studies revealed that the level of drug synergy was proportional to Pgp activity. Interestingly, synergism was ablated by inhibiting Pgp using the pharmacological inhibitor, Elacridar, or by inhibiting Pgp-expression using Pgp-silencing, demonstrating the importance of Pgp in the synergistic interaction. Furthermore, lysosomal-membrane stabilization inhibited the relocalization of DOX from lysosomes to the nucleus upon combination with Dp44mT or DpC, preventing synergism. This latter observation demonstrated the importance of lysosomal-membrane permeabilization to the synergistic interaction between these agents. The synergistic and potent anti-tumor efficacy observed between DOX and thiosemicarbazones represents a promising treatment combination for advanced cancers, which are heterogeneous and composed of non-Pgp- and Pgp-expressing tumor cells.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Co-treatment by docetaxel and vinblastine breaks down P-glycoprotein mediated chemo-resistance

Objective(s): Chemoresistance remains the main causes of treatment failure and mortality in cancer patients. There is an urgent need to investigate novel approaches to improve current therapeutic modalities and increase cancer patients' survival. Induction of drug efflux due to overexpression of                  P-glycoproteins is considered as an important leading cause of multidrug resistance...

متن کامل

Antitumor activity of metal-chelating compound Dp44mT is mediated by formation of a redox-active copper complex that accumulates in lysosomes.

The metal-chelating compound Dp44mT is a di-2-pyridylketone thiosemicarbazone (DpT) which displays potent and selective antitumor activity. This compound is receiving translational attention, but its mechanism is poorly understood. Here, we report that Dp44mT targets lysosome integrity through copper binding. Studies using the lysosomotropic fluorochrome acridine orange established that the cop...

متن کامل

Antitumor activity of metal chelating compound Dp44mT is mediated by formation of a redox-active copper complex that accumulates in lysosomes. Running title: Dp44mT forms a copper complex that targets lysosomes

Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. ABSTRACT The metal chelating compound Dp44mT is a di-2-pyridylketone thiosemicarbazone (DpT) which displays potent and selective anti-tumor activity. This compound is receiving translational attention but its mechanism is poorly understood. Here we report that Dp44mT targets lysosome integrity ...

متن کامل

Altered pH gradient at the plasma membrane of osteosarcoma cells is a key mechanism of drug resistance

Current therapy of osteosarcoma (OS), the most common primary bone malignancy, is based on a combination of surgery and chemotherapy. Multidrug resistance mediated by P-glycoprotein (P-gp) overexpression has been previously associated with treatment failure and progression of OS, although other mechanisms may also play a role. We considered the typical acidic extracellular pH (pHe) of sarcomas,...

متن کامل

Lysosomal accumulation of drugs in drug-sensitive MES-SA but not multidrug-resistant MES-SA/Dx5 uterine sarcoma cells.

Sequestration of drugs in intracellular vesicles has been associated with multidrug-resistance (MDR), but it is not clear why vesicular drug accumulation, which depends upon intracellular pH gradients, should be associated with MDR. Using a human uterine sarcoma cell line (MES-SA) and a doxorubicin (DOX)-resistant variant cell line (Dx-5), which expresses p-glycoprotein (PGP), we have addressed...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2016